
API Infrastructure: 
ESB versus API Gateway

KongHQ.com

ebook



API Infrastructure: ESB versus API Gateway

© Kong Inc. 2

Introduction

Connectivity for Delightful Experiences		

	 Reliable APIs

	 The importance of connectivity

	 The ESB and connectivity

The Enterprise Service Bus		

	 What is an ESB?

	 Benefits and drawbacks of an ESB

	 The future of ESBs

The API Gateway		

	 What is an API gateway?

	 What benefits does an API gateway provide?

	 How do API gateways compare to ESBs?

	 When to use an API gateway?

Putting It All Together		

	 The power of ESB + API gateway for the modern enterprise

	 The long-term outlook

Content
3

4

4

4

5

6

6

7

9

10

10

11

12

13

15

15

15



API Infrastructure: ESB versus API Gateway

© Kong Inc. 3

Introduction
For the modern enterprise, providing delightful experiences founded on customer obsession has 
become an all-encompassing task. Forrester research shows customer-obsessed companies report 
2.5 times higher revenue growth and 2.2 times better customer retention. Gartner predicts that digital 
self-service channels coupled with predictive analytics of customer behaviors will soon be the most 
valuable capabilities for service organizations.

However, implementing systems that put the 
customer at the center requires harnessing 
all of the organization’s resources in a way 
that is greater than the sum of its parts. Thus 
connectivity is a key part of any modern IT 
infrastructure. Back in the day, the Enterprise 
Service Bus (ESB) was the primary provider of 
connectivity for a service-oriented architecture 
(SOA). 

However, times are changing. Organizations 
are moving towards decentralization, replacing 
monoliths with microservices, and abandoning 
the idea of having whole organizations use a 
single tech stack in favor of having a diversity 
of languages, platforms, and solutions. They’re 
liberating siloed data and modernizing legacy 
applications, and they’re using APIs to do so. 
In addition, organizations are migrating their 
services and applications to the cloud.

In the midst of all this, connectivity to provide 
connected customer experiences is even more 
critical than before. API gateways are a modern 
solution for connectivity which free up teams 
to provide the innovation and efficiency that 
modern enterprises require.

In this eBook, we’ll first look at why connectivity 
is becoming more important each day. Next, 
we’ll cover the ESB — what it is, how it arose, 
and where it was used. Then, we’ll take a look 
at another solution for connectivity — the API 
gateway — and compare it to the ESB. Finally, 
we’ll discuss how present-day organizations can 
move forward.

https://www.forrester.com/report/the-state-of-customer-obsession/res136701
https://www.gartner.com/smarterwithgartner/4-key-tech-trends-in-customer-service-to-watch
https://www.gartner.com/en/information-technology/glossary/service-oriented-architecture-soa
https://konghq.com/learning-center/api-gateway/what-is-an-api-gateway


API Infrastructure: ESB versus API Gateway

© Kong Inc. 4

Connectivity for Delightful Experiences

This world is becoming increasingly digital. Digital transformation, or the integration of digital 
technology into all areas of a business, is continuing its expansion. It is no longer simply the 
integration of a new piece of software or hardware, but a cultural change that fundamentally affects 
how organizations operate and what they target.

In order to provide customers with great digital experiences, it is important to connect the sum of 
all your organization’s interactions with the customer. This ability to connect marketing, sales, IT, 
and all your departments with regard to your customer is also known as Customer 360. By linking 
and synchronizing information about your customer from every angle, the organization has a more 
holistic understanding of the customer — order history, demographic information, loyalty data, 
complaint history, and more. 

One of these new targets is customer 
obsession. It is no longer enough to simply 
say that you are a customer-first company. 
Customer obsession comes from having an 
organization-wide focus and commitment 
to placing customer needs at the center of 
everything that the company does. From sales 
and marketing to operations to support, every 
department needs to share this commitment.

From there, it becomes possible to generate 
delightful experiences for your customers. 

In the age of social media, organizations that go 
beyond merely satisfying customers’ needs and 
seek to actively delight them will gain outsized 
influence and mind share.

While none of this is new, each piece of it is 
reaching new heights. The focus and data 
needed to drive all this is unforgiving and 
requires the organization to relentlessly pursue 
it. Connectivity plays a key role in providing that 
delightful experience.

The data from this 360-degree view is then used 
to provide an omni-channel digital experience. 
The organization can then provide a delightful 
experience to the customer that is intricately 
personalized and perfectly in-the-moment. 
The customer no longer feels like he or she is 
interacting with a nameless bureaucracy, but is 
being treated as a whole person.

In order to generate this 360-degree view and the 
resulting omni-channel experience, connectivity 
is key. Every system and business process 
within the company must be connected and kept 
up-to-date in order for the customer to have a 
seamless, delightful experience.

Reliable APIs

The importance of connectivity



API Infrastructure: ESB versus API Gateway

© Kong Inc. 5

In a service-oriented architecture (SOA) — which 
was still growing and evolving — the challenge 
of connecting different services with different 
standards and protocols was significant, and 
the ESB rose to meet that challenge. 

In an environment becoming more centralized, 
the ESB became a significant part of enabling 
a monolithic enterprise architecture. With the 
need to connect large, on-prem applications and 
databases, the ESB enabled that connectivity. 
Let’s look at how it achieved that task.

Connectivity has always been important. However, in the past, the focus was on organizational 
efficiency. The Enterprise Service Bus (ESB) was originally envisioned as a connector for all the 
different kinds of services that existed.

The ESB and connectivity



API Infrastructure: ESB versus API Gateway

© Kong Inc. 6

The Enterprise Service Bus

An ESB is a middleman that connects 
applications in a SOA. Instead of direct point-to-
point or client-server communication, the ESB 
integrates with all endpoints. The idea of an ESB 
really took off in the early 2000s and has since 
grown to become an important part of large 
enterprise IT infrastructure.

Since there isn’t a single standard for all ESBs 
to follow, this eBook will refer to the capabilities 
of ESBs generally. A given ESB implementation 
may not contain every feature, but there are large 
similarities across the ESB space.

An ESB serves to decouple the various services 
and applications that exist in an SOA-based IT 
environment. Each service must set up just a 
single integration with the ESB. From there, the 
ESB makes that service available to all other 
services connected to it, typically handling 

format transformation, protocol negotiation, 
queueing, and in some cases even additional 
business logic. In doing so, the ESB serves as a 
one-stop shop for any applications or services 
looking to consume or publish data. 

The key here is that the ESB is an intermediary for all service-to-service communication, which 
typically delivers the best benefits.

What is an ESB?

The role of the ESB

Figure: The Enterprise Service Bus



API Infrastructure: ESB versus API Gateway

© Kong Inc. 7

Now that we have a general understanding of the ESB, let’s take a look at the specific challenges 
ESBs solve, the benefits of ESBs, and some drawbacks.

In its role as a negotiator and mediator of inter-service communication, the ESB tends to become a 
central hub of IT infrastructure. The ESB provides many features that allow it to integrate with just 
about every service available, including legacy services. 

As more services go through the ESB, the drive 
to bring every new service through the ESB 
increases. There is a “network effect” similar to 
that of large social networking apps. The more 
people that are on the network, the more draw 
there is for others to join.

As such, the ESB eventually becomes an 
essential monolith service of its own. Each 
integration with the ESB tends to go just a bit 
further and contains a little more logic. Before 
long, the business logic no longer lives in the 
individual services, but rather in the ESB.

As the ESB grows, it naturally requires more 
maintenance and attention. This responsibility 
typically goes to a dedicated IT team, tasked 
with the upkeep of the ESB. Since the ESB acts 
as a centralized hub for all service-to-service 

communication, the ESB team must function 
similarly, communicating and working with 
the various application teams. Coordinating 
new features and rollouts avoids breaking 
downstream dependencies

In an era where service formats and even 
protocols were non-standardized, the ESB 
provided a way to centralize those integrations. 
Consider an enterprise context where you had 
five services. Without an ESB, 10 point-to-point 
integrations would be required for each of those 
services to communicate with one another. 
Add one more service, and the total jumps 
to 15. With each new service, the number of 
integrations required grows exponentially, as do 
the resources required for upfront development 
and maintenance. With an ESB, each new service 
only requires one new integration — directly with 
the ESB.

Additionally, since ESBs have centralized access 
to all services, ESBs provide orchestration 
benefits — that is, the ability to aggregate data 
from multiple services and present it as a single 
service. As the number of services grows and 
the needs of applications become more complex, 
orchestration allows simpler application 
development and interfacing.

Benefits and drawbacks of an ESB

Centralized, on-prem architecture

The ESB team — central IT

What challenges do ESBs solve?



API Infrastructure: ESB versus API Gateway

© Kong Inc. 8

One major benefit of an ESB is service discovery. Since services must connect to the ESB to access 
other services, the ESB also serves as a directory of the services in the organization. This is one of 
the benefits of the ESB’s network effect: In addition to simple integrations, the ESB can serve as a 
continuous up-to-date source of documentation about any given service. It contains not only general 
information about the service but also technical details of how to consume and use the data from 
the service. Of course, this information is geared for developer consumption, providing engineering-
level understanding rather than business-level understanding.

While ESBs provide many benefits, they also introduce their own challenges and issues. Perhaps the 
most apparent challenge is that maintenance of the ESB became its own task, often requiring an 
entire dedicated team. As each service produces and consumes data in its own way, the ESB team 
becomes responsible for all the integrations with the ESB. 

Benefits of ESBs

How ESBs fail organizations

ESBs also add a measure of resiliency to 
the service architecture. As an intermediary 
to service communication, ESBs can 
add middleware-like functionality to that 
communication. Many ESBs serve as a message 
queue, allowing for the decoupling of services, 
as they are no longer required to be online at the 
same time in order to communicate. This makes 
inter-service communication more resilient, less 
prone to network outages, and able to withstand 
the failure of any individual service.

In addition to messaging, ESBs also add load 
balancing and transactions. Load balancing allows 
for increased service availability, and transactions 
allow for performing complex operations as atomic 
units with rollback capability.

Finally, as ESBs grew in prominence, some added 
even more features. Some features include 
adding business logic and rules in a centralized 
way — with no-code and low-code solutions 
available for those in the organization — and 
viewing and generating graphical modeling of 
the architecture. Additionally, more adapters 
were introduced for consuming large enterprise 
applications and even EDI communication. While 
each of these features served as a value-add, 
they also increased the scope and complexity 
of the ESB application. This leads us to our next 
point: How did ESBs fail organizations?

Additionally, with the growing functionality of 
many ESBs, the ESB team is required to take 
on development and maintenance of that new 
functionality as well. As such, while the ESB 
originally promised to decrease the complexity of 
the overall IT architecture, it introduced its own 
complexity and overhead.

More importantly, the centralization of the 
ESB results in a high coupling of teams and 
decreased team independence. Since every 
service needs to integrate with the ESB, the 
development team for that service or application 
needs to work closely with the ESB team on each 
change to the service.



API Infrastructure: ESB versus API Gateway

© Kong Inc. 9

In the modern IT landscape, service development has moved towards an API-first approach. We are 
no longer in the SOA world, and APIs have become much more standardized with regard to protocols. 
Additionally, development of the modern API has moved towards a spec-first approach. This means 
that teams that want to consume and integrate with a given service no longer need to wait for that 
service to be developed before working on their own application. With the technical contract already 
in place, development can happen in parallel

Finally, the move towards microservices is fundamentally at odds with the traditional, monolithic 
ESB. By breaking down the monolith ESB into multiple focused services, this retains many of the 
advantages while still increasing flexibility and agility.

With an understanding of ESBs and the shifts that are occurring in the modern enterprise, it is time to 
look at a new model of integration: the API gateway.

The role of service connectivity in the modern IT landscape

Challenging the old ways of connecting via ESB

IT is moving towards decoupled, distributed 
teams. As organizations continue the search for 
agility and innovation, small development teams 
require increasing amounts of autonomy. To 
the modern development team, being coupled 
to a single point of integration or oversight is 
anathema.

Similarly, IT environments are becoming 
increasingly distributed as well. Organizations 
are no longer on-prem or even cloud-only; rather, 
they are working with hybrid-cloud and multi-
cloud environments. There can no longer be 
points of integration that only work in one given 
environment; those points of integration must be 
able to span various types of environments.

Additionally, the growth of ESBs and the 
inclusion of business logic means that 
integrations are no longer merely about the 
communication or translation of information. 
ESBs become not just another monolith service, 
but a monolith service that all other services are 
required to work with.

This high coupling of teams results in slower 
application development, more overhead on 
every new service, and less agility for both 
individual teams and the enterprise as a whole.

The centralization of the ESB also made 
migration to the cloud a complicated endeavor. 
With services highly coupled and dependent 
upon the ESB for their business logic, 
organizations seeking to move to the cloud 
have few options beyond a simple “lift and shift” 
approach that keeps the ESB central but merely 
hosted in the cloud.

With these issues, what does the future hold for ESBs? Let’s take a look at the modern IT landscape 
and how ESBs fit in.

The future of ESBs



API Infrastructure: ESB versus API Gateway

© Kong Inc. 10

The API Gateway

An API gateway is a modern infrastructure component between clients and services. The API 
gateway acts as a single point of entry for clients. This is in contrast to an ESB, which handles all 
inter-service communication.

What is an API gateway?

Similarly to ESBs, API gateways serve the role of connecting together disparate services and 
integrating that information. However, with the rise of APIs, the task of connectivity is more focused.

Figure: API gateway

APIs provide the standardized contract that was 
missing from the SOAP environment. In their 
original form, ESBs were a technical solution to 
a former standards problem. Additionally, with 
the advent of spec-first API development, the 
contract between client and service no longer 
needs to wait for the service to be developed, 

further decoupling development teams. In 
addition, this approach focuses on business 
requirements, prioritizing business and customer 
outcomes rather than merely cobbling together 
a spec for a backend system. API-first design 
leads to better reuse and relevance for business-
led “products.”

A shift from service-first (ESB view) to API-first



API Infrastructure: ESB versus API Gateway

© Kong Inc. 11

Now that we have a general understanding of what an API gateway is, let’s take a closer look at its 
benefits and use cases.

What benefits does an API gateway provide?

With the advent of microservice-based 
architectures, the number of services to manage 
and oversee has increased dramatically. 
This is where API Management comes into 
play: It simplifies this oversight task for you 

by considering the entire API lifecycle — 
design, documentation or a developer portal, 
deployment, discovery and connectivity with an 
API gateway, and Day 2 concerns.

The API gateway allows you to simplify the 
task of connecting to any given API. An API 
gateway handles cross-cutting concerns such 
as authentication, logging, and monitoring. 

Additionally, an API gateway can also handle 
orchestration to reduce roundtrips. Finally, the 
API gateway can provide the correct API for 
each client.

First, API gateways allow the centralizing of 
common functions to reduce overhead. Rather 
than reinventing the wheel with every service, 
cross-cutting concerns such as authentication, 
logging, and monitoring can be handled at the 
gateway level. 

This makes each service leaner and reduces 
development time by allowing developers 
to focus on the actual business logic and 
competitive differentiation of each service. 
It also decreases overall system complexity, 
as these cross-cutting concerns can be 
implemented once in the gateway.

API gateways also decouple the clients from 
the implementation details of the services. 
This allows for the orchestration of multiple 
microservices into one client API. Similarly, 

differing clients can receive different APIs 
tailored to their needs, in a variation on the 
“backend for frontend” pattern.

API gateways serve as a natural place 
for discovering APIs. This speeds up the 
development of new clients and features. A 
developer portal working alongside an API 

gateway promotes API adoption and reuse by 
ensuring that APIs are highly discoverable, well-
documented, and easy to consume.

Why is API Management so important to the modern enterprise?

What role does the API gateway play?

Leaner microservices

Decoupled clients and services

API Discovery



API Infrastructure: ESB versus API Gateway

© Kong Inc. 12

API gateways can also increase performance 
by reducing the number of requests and round 
trips required for a given API call. Through 
orchestration, there are several API calls on the 
backend that can be aggregated into one roundtrip 
from the client to the API gateway and back. 

This can improve the user experience. Through 
caching, API gateways can determine which 
requests can receive cached responses with 
fresh-enough data, thereby reducing unnecessary 
load on services.

Due to its position as a client-service 
intermediary, the API gateway is well positioned 
to provide logging, monitoring, and analytics 
data. Again, this is similar to an ESB, although 

ESBs provide this for all service-to-service 
communication. API gateways only do so 
for requests between the client and the API 
gateway.

The API gateway can take care of providing 
consistent, best practice governance, security, 
observability, and handling of all other cross-
cutting concerns. This is most easily done 
through plugins and policies applied at the API 
gateway level. Aspects that the API gateway 
manages include:

•	 Authentication and authorization
•	 Traffic control and shaping
•	 Request and response transformation
•	 Security
•	 Logging
•	 Routing

The main advantage is that API gateways have 
a clear scope. ESBs were envisioned as the end-
all, be-all solution to communication between all 
applications and services. As they grew into that 
role, additional features were added, allowing 
for business rules and logic to be incorporated 
into the system. As such, the ESB became too 
convenient; what began as a project to reduce 
system complexity evolved into a massively 
complex system of its own.

On the other hand, API gateways play a more 
focused role. First, the API gateway is not 
responsible for (as much) transformation 
and protocol negotiation. As API standards 
have matured, the API gateway can be 
leaner than an ESB, focused specifically on 
cross-cutting concerns. Additionally, the API 
gateway is focused primarily on client-service 
communication, rather than on all service-to-
service communication. Again, this focus allows 
it to stay lean and specialize.

Decreased number of requests required

Logging, monitoring, and analytics

Consistency through plugins

When comparing API gateways to ESBs, the similarities are clear. Both solutions occupy a similar 
place in the architecture: the centralized intermediary for communication with services. However, API 
gateways offer advantages as well as a more modern approach to achieve those advantages.

How do API gateways compare to ESBs?

https://docs.konghq.com/hub/plugins/overview/#terminology


API Infrastructure: ESB versus API Gateway

© Kong Inc. 13

ESBs fail this standard, as they are large, 
central monoliths leading to increased coupling 
between teams and decreased independence. In 
contrast, API gateways — thanks to their scope 
specificity — free up teams to focus on their 
individual tasks. By handling the cross-cutting 
concerns, API gateways enable teams to be 
leaner and more specialized.

API gateways — with developer portals — also 
foster a design-first approach to APIs and 
promote a discovery-led consumption approach. 
By providing the right API for each client, API 
gateways can enable increased adoption, reuse, 
and iteration velocity. This also facilitates 
consuming and discovering APIs across the 
organization and enables the use of no-code 
or low-code tools. Again, the focus is on the 
enablement of independent teams rather than 
coupling to the API gateway team itself.

This specificity of scope allows API gateways to 
avoid scope creep, keeping them from becoming 
yet another monolith that needs to be broken 
down. When selecting an API gateway, it is 
important to find a product with a clear identity 
rather than an extensive feature set.

In contrast to the centralized and highly-
coupled nature of ESBs, API gateways allow for 
decentralization and distribution. This aspect 
empowers both kinds of enterprises — those 
that are on the journey to the cloud and those 
that are taking a hybrid approach.

Why is the right culture so important to the modern enterprise?

In the modern enterprise, the focus is on increasing agility and fostering innovation. This occurs 
through distributed teams with the independence and ability to do their work. In general, the shift 
toward decentralization is not only technical, but it is also cultural. As such, it becomes critical to 
select the right tool for the job — not just for its technical specifications, but also for the culture 
alignment that the enterprise wishes to foster.

API gateways are a good fit for the modern business that is focused on moving faster and enabling 
innovation. Let’s consider why organizational culture matters.

When to use an API gateway?



API Infrastructure: ESB versus API Gateway

© Kong Inc. 14

Deployment complexity
First, consider the technical requirements of 
the gateway. How many pieces must be set up 
to get to a minimally viable installation? Many 
require setting up an additional database. 
The initial deployment complexity is also 
relevant when considering future maintenance 
requirements. Your deployment complexity 
also hinges upon your infrastructure approach 
— will your systems be in the cloud or on-
prem or a hybrid? Will you leverage a container 
orchestration platform like Kubernetes?

Proprietary versus open source
Consider the extensibility of the platform as 
well as the probability of long-term support. 
Introducing an API gateway into your 
environment is a significant architecture-level 
change that affects many teams, and it is not 
something you want to be forced to remove due 
to the end-of-life situation of a third party.

Ease of scaling
Since the API gateway will be in the critical path 
for every client-service interaction, scaling is 
critical. Consider your growth plans and whether 
the API gateway can scale both horizontally as 
well as vertically. Scale management is best 
achieved by providing support for modern, 
orchestrated, and declarative approaches like 
Kubernetes.

Feature set
An API gateway, at the very least, must support 
the full API lifecycle. Beyond this, however, 
whether or not an API gateway has the most 
features should be a secondary concern. As 
we have seen from the ESB journey, scope 
creep and feature bloat lead to a less effective 
product. Consider carefully the role of the 
API gateway, and look for a product focused 
specifically on fulfilling that role, regardless of 
feature set size.

While avoiding the monolithic nature of ESBs, API 
gateways also provide some similar efficiencies 
from centralization, allowing your microservice 
teams to operate faster and leaner. The API 
gateway enables development teams to focus 
more, increasing their independence and velocity.

Finally, by avoiding the centralization of business 
logic, API gateways allow this logic to be 
distributed closer to the services that require it. 
This, again, avoids coupling teams to the API 
gateway and increases team independence.

How to select the right API gateway in a sea of options?

API gateways in the modern enterprise architecture

When considering the adoption of an API gateway, the selection of an API gateway is critical, 
involving several criteria for consideration.

In the modern, API-first enterprise architecture, API gateways are a purpose-built fit. The proliferation 
of microservices means that there are an infinite number of services that need to be identified, 
discovered, documented, protected, controlled, and secured. API gateways provide an anchor and a 
point of reference that enable clients to interact with myriad services in a manageable way.



API Infrastructure: ESB versus API Gateway

© Kong Inc. 15

Putting It All Together
Now that we have a clear understanding of both ESBs and API gateways, let’s put all of this together. 
Perhaps you already have an ESB and are considering adopting an API gateway, or perhaps you 
are already in the process of introducing an API gateway into your architecture. How do you move 
forward from here?

To do this, IT organizations must become 
technically heterogeneous and diverse rather 
than homogenous. They must embrace the 
best-of-breed solution for each use case. This 
requires diversity in technical solutions and 
approaches. After all, the shift in direction is 
multifaceted. Here are some examples:

•	 On-prem or cloud-only → Hybrid-cloud and/or 
multi-cloud environments

•	 Centralized → Distributed
•	 Monolith architecture → Microservices
•	 Servers → Serverless, functions, Kubernetes, 

containers
•	 Organization-wide languages → Polyglot 

teams and organizations

With regard to integration platforms, the focus 
should now move to APIs. API connectivity is the 
new competitive battleground, and API gateways 
are a solution specifically for this purpose.

In most situations, a gradual hybrid approach is 
the best starting point. Start by implementing 
an API gateway with new APIs, and slowly bring 
over more services as opportunity and time 
allow. Over time, this gradual approach will break 
apart the monolith ESB. Take the opportunity to 
extract the business logic inside the ESB and 
distribute it into new microservices. The goal is 
not necessarily to replace the ESB entirely, as it 
still has a place with legacy services that may 
never get upgraded. However, the focus is on 
moving the ESB out of the critical path for new 
development.

Additionally, focus on those new APIs and 
the API Management capabilities unlocked 
by the API gateway. Generate value through 
connectivity, and the underlying implementation 
should naturally shift towards the place with the 
most value.

However, in the mid-term, the API contract 
will be longer-lived by building business-level 
dependencies on top of them. As such, a focus 
on API connectivity will generate value for the 
modern enterprise.

Interested in learning more about how Kong’s API 
gateway can enable your organization to become 
customer-obsessed? Learn more here.

The journey of the modern enterprise involves moving toward agility and rapid innovation in order to 
delight the customer. By increasing team independence and enabling those teams to remain lean and 
focused, this journey is possible.

Every IT business should focus on generating value for the customer rather than any specific 
implementation. This is because the needs of the business will evolve and change over time. The 
systems you connect to and the data you consume will change as well.

The power of ESB + API gateway for the modern enterprise

The long-term outlook

https://konghq.com/blog/enterprise/why-kong-is-the-best-api-gateway


API Infrastructure: ESB versus API Gateway

© Kong Inc. 16

Konghq.com

Kong Inc.
contact@konghq.com 

77 Geary Street, Suite 630
San Francisco, CA 94108
USA

http://Konghq.com?utm_medium=content&utm_source=kong&utm_campaign=ebook-api-best-practices
mailto:contact%40konghq.com?subject=

