
Automated
Software Delivery
A 3-phase approach to modernizing
your existing software delivery process

2

Follow us:Start your GitLab free trial

A 3-phase approach for automating
software delivery 	 03

Phase 1: Consolidate DevOps tools
and start with the basics	 04

Phase 2: Implement continuous delivery	 06

Phase 3: Implement continuous deployment	 09

Begin your journey to DevOps modernization 	 11

Whatʼs inside?

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp

3

Follow us:Start your GitLab free trial

Modernizing your existing software delivery processes does not
take place from one day to the next; rather it is a journey, where
improvements can be made in a phased manner. Organizations
are unique and their adoption of DevOps principles can take many
forms and can follow different paths that are appropriate to them.

No matter where you are in your adoption journey, automating
your software delivery can improve safety of your development
lifecycle and releases and lower risk through consistent and
repeatable processes. We suggest a three-phase incremental
approach to automating your software delivery.

A 3-phase approach
for automating
software delivery

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp

4

Follow us:Start your GitLab free trial

Phase 1: Consolidate
DevOps tools and start
with the basics

For organizations that are beginning to embrace DevOps practices,
a good first step is to lay down the foundation on top of which your
software delivery automation will be built. Ideally, this foundation
should be encapsulated in a platform with a single data model
that can support all DevOps stages, from planning to multi-cloud
deployments. Some potential benefits of a single data model are
better correlation of data across all stages, better data harvesting
and visualization leading to the creation of higher-level business
value assets, like reports and dashboards that can provide insight
into your teams’ software delivery and operational performance and
efficiency.

With this in mind, put together a plan to consolidate and rationalize
your heterogeneous DevOps tools into a platform that supports
a single data model. Consolidating your DevOps tools does not
necessarily mean you have to immediately relinquish your other
tools right from the start. Since you are beginning to embrace
DevOps practices, here are some good starting points:

• �Move everything to code. This helps to make your processes
repeatable, scalable, and less error prone. Most version
control and collaboration (VCC) tools that support DevOps
processes use git as their underlying technology. So, it should
be fairly straightforward to migrate from a best-of-breed git-
based tool to the single platform. However, if you’d like to keep
your VCC tool, you could import or mirror the VCC-related
data from it to the single platform.

• �Use issues, merge/pull requests, epics, iterations/sprints,
and milestones. Issues, where product problems or new
features are described, and merge requests, where solutions
are developed, are key inputs to the release planning process.
As components of the release, issues and MRs provide the
auditability and tracking of application changes done by the
collaboration of DevOps Engineers, System Administrators,
and Developers. To track groups of issues with the same
theme, you can create epics.

“�GitLab is the one tool that connects our whole team. You
always see GitLab open and everything is based on GitLab.
GitLab is the backbone of our software development.”

 — �Head of Software Development from a
global IT service provider

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp
https://about.gitlab.com/customers/hemmersbach/

5

Follow us:Start your GitLab free trial

Milestones are a way to track issues and merge requests created
to achieve a broader goal in a certain period of time. They allow
you to organize issues and merge requests into a cohesive group,
with an optional start date and an optional due date. Iterations
are a way to track issues over a period of time and help you track
velocity and volatility metrics.

Iterations can be used with milestones for tracking over different
time periods. You can track the sprints through their detailed
pages, which include many progress metrics. As you assemble
epics, milestones, and iterations, you can visually track the
release progress via the Roadmaps page, which helps to
streamline the development lifecycle and release processes.

• �Set-up approval gates for protecting your production
environment. As part of the release approval gates, you
can protect the production environment by specifying who
is allowed to deploy to it. Specific role and responsibility
assignments streamline the approval gates and release process.

• �Leverage the built-in capabilities for the automation of the
release creation process. If the release evidence is created
by the built-in release creation process, then take advantage
of this automation. The release evidence contains data related
to the release, such as milestones, issues and job artifacts
included in the last pipeline that ran, among others. This
streamlined process helps you reduce the release cycle times.

• �Set-up deploy freezes. You can set a deploy freeze window
to temporarily halt automated deployments to production.
This prevents unintended production releases during a period
of time to help reduce uncertainty and risk of unscheduled
outages.

“�If you want to speed up the delivery cycle, you need to
simplify your ecosystem. And we've been doing that with
GitLab along the way, it's critical for developers to have
one single point of contact and one simple interface to
increase the speed of delivery.”

 — �VP Cloud Operations from an independent API
gateway vendor

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp
https://about.gitlab.com/customers/axway-devops/
https://about.gitlab.com/customers/axway-devops/

6

Follow us:Start your GitLab free trial

Phase 2: Implement
continuous delivery

As you continue adopting more DevOps practices within your
organization, a good second step is to set up continuous delivery.
In this second phase, every change is automatically deployed to the
user acceptance testing (UAT) or staging environment with a manual
deployment to production. In this scenario, there is no need for a
deploy freeze, you can cut a release from staging at any point in time.

To begin the adoption of continuous delivery in this second phase:

	Leverage any built-in CI/CD pipeline templates included in the
platform. These templates provide many benefits, such as:

• �Automatically creating CI/CD pipelines and reduce time spent
manually creating your own, so your developers can spend more
time delivering value to the business. You can even start with a
template and modify it to fit your needs.

• �Automatically standing-up the staging and production
environments, deploying the application to them, and putting
advanced deployment techniques at your disposal. This includes
incremental and canary rollouts, increasing your development
cycles’ productivity and speed, accelerating your time-to-market.

In addition, incremental rollouts lower the risk of production
outages delivering a better user experience and customer
satisfaction. Advanced deployment techniques, like canary,
incremental, and blue-green also improve development and
delivery efficiency streamlining the release process.

• �Building template jobs which can automatically detect the
languages of your application and apply the appropriate build
strategy to create a Docker or container image of the application
and store it in the platform’s built-in container registry. Faster and
more reliable releases happen when you have build components,
like container images, that are readily available to the development
lifecycle and release processes in a uniform and consistent
manner. You could also leverage the platform’s built-in package
registry, which supports many packaging technologies (e.g.
maven, npm, etc.)

In short, all these templates can help you streamline your software
delivery processes.

Start using any review pipeline templates included in the platform.
These pipelines allow stakeholders to visualize what specific
features will go into production. As updates are made to the
application via merge/pull requests, they kick off review pipelines,
which streamline the review process including the automatic
creation and destruction of an ephemeral review environment,
on which stakeholders can collaborate and verify the updates to
the application before they are merged to the main branch. These

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp

7

Follow us:Start your GitLab free trial

review pipelines can help increase code quality, reducing the risk of
unexpected production outages.

Take advantage of any built-in rollback and auto-rollback
capabilities. All updates to the environments, managed by the
platform, are tracked and kept as an auditable list of changes. If a
rollout puts your production environment in an unstable state, you
can quickly roll production back to a previous working state, with
the click of a button, by choosing it from the auditable list. Rollbacks
can speed up recovery of production in case of failures lowering
outage times and leading to better customer satisfaction and user
experience.

Leverage any pipeline scheduling capabilities included in the
platform. Pipelines usually run automatically. However, if you would
like to schedule the execution of a pipeline once a day at midnight,
for example, so that the user acceptance testing or staging
environment can have the most recent version of the application on
a daily basis, make sure to use any built-in scheduling capabilities.
Scheduling pipelines can improve the efficiency of the development
lifecycle and release processes.

Monitor how your applications are performing in production
via built-in dashboards available in the platform. By tracking
applications performance, you can quickly identify and troubleshoot
any production issues. There are a few ways you can do this:

• �Monitor a specific environment to track system and application
metrics, such as system and pod memory usage, and # of cores
used. Through this monitoring, you should be able to track markers
when updates were introduced to the environment, so that
fluctuations in the metrics can be correlated to a specific update.
Monitoring reduces the time to identify, resolve and preempt
production problems lowering the risk of unscheduled outages.
It also provides an opportunity to do business activity monitoring
and optimize cloud costs. Not only is this type of monitoring useful
to release managers but also to DevOps Engineers, Application
Operators and Platform Engineers.

• �Create alerts to detect out-of-range metrics, which you should be
able to visualize on overall operations metrics dashboards as well
as on specific environment windows. Alerts can also automatically
trigger ChatOps and email messages to appropriate individuals or
groups. You should be able to manage alerts from a centralized
dashboard, a single location from which you can assess and
handle alerts, which may include the manual or automatic rollback
of a release.

• �Track and monitor your development lifecycles and release
progress through value stream analytics dashboards, where you
can check your project or group statistics over time and see how
your team improves in the number of new issues, commits, deploys

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp

8

Follow us:Start your GitLab free trial

and deployment frequency. Value stream analytics is useful in
order to quickly determine the velocity of a given project and it
also points to bottlenecks in the development process, enabling
management to uncover, triage, and identify the root cause of
slowdowns in the software development lifecycle.

• �Track and monitor your releases through pipeline analytics
dashboards. Pipeline analytics shows the history of your
pipeline successes and failures, as well as how long each
pipeline ran to help you understand the health of your projects
and their continuous delivery. They should include your DORA4
metrics, which are performance metrics that measure the
effectiveness of an organization’s development and delivery
practices.

Track overall operations via consolidated built-in dashboards
available in the platform. For example, through an operations
dashboard, you get a summary of each project’s operational
health, including pipeline and alert status. Similar to an operations
dashboard, an environments dashboard can provide a cross-
project environment-based view that lets you see the big picture
of what is going on in each environment. All these dashboards
provide you with the operations insights that you need to
understand how your development cycles and releases are
performing in production and quickly identify and troubleshoot
any production issues.

Start identifying and planning GitOps processes that can
support your software delivery.: The application of DevOps
principles and best practices to the management and automation
of your infrastructure is what GitOps is all about. Start identifying
what infrastructure components can be managed and automated
using infrastructure-as-code (IaC) in git. Whether these are
physical, virtual or containerized, start planning what GitOps
flows would make sense to establish to ensure that your
infrastructure remains in sync with the IaC files that describe it.

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp

9

Follow us:Start your GitLab free trial

Phase 3: Implement
continuous deployment

As you mature in your adoption of DevOps best practices, the third
step is to get set-up for continuous deployment. In this third phase,
every change is automatically deployed to production.

To start the adoption of continuous deployment in this third phase:

• �Take advantage of any built-in capabilities that can automatically
handle continuous deployments. This will save you time and can
increase productivity and speed of development and deployment
to production, accelerating your time-to-market.

• �Start using progressive delivery/developer experimentation
techniques. Think of progressive delivery/developer
experimentation as continuous delivery with fine-grained control
over how and who gets to experience the updates to your
application. Feature flags are a good example of this. If you would
like to introduce a feature to a segment of your end users in a
controlled manner in production, you can create Feature Flags.
Feature flags help you reduce risk, allowing you to do controlled
testing, and separate feature delivery from customer launch.

30%
improvement in
developer productivity

2.6%
reduction in build times

50%
faster to launch a new
application

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp

10

Follow us:Start your GitLab free trial

• �Leverage any built-in audit events dashboards. Audit events
dashboards track important events such as who performed
certain actions and the time they happened. For example,
these actions could be a change to a user permission level,
who added/removed a user, who introduced a feature flag,
for example.

• �Start using any security dashboard included in the platform.
You can check security and compliance related items of your
projects by leveraging the built-in Security dashboards in
the platform. The audit events and security dashboards can
help you preempt out-of-compliance scenarios to avoid
penalties. They can also streamline audits, provide an
opportunity to optimize cost, and lower risk of unscheduled
production outages.

• �Start implementing GitOps processes that support the
automation of your software delivery.

“�GitLab has really helped us because we can work with a lot
of people on projects, maintain the quality, make sure that
everybody checks each other’s work, and then deploy it on
an infrastructure that doesn't bear any surprises because
it just follows through the continuous deployment. It just
follows wherever the project is going.”

 — �CTO from a large data science and engineering firm in Europe

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp
https://about.gitlab.com/customers/anchormen/

11

Follow us:Start your GitLab free trial

No matter where you are in your adoption journey,
automating your software delivery can improve
safety of your development lifecycle and releases
and lower risk through consistent and repeatable
processes. Modernizing your existing software
delivery processes doesn’t take place overnight,
rather it is a journey, where improvements made in
phases get you to the destination, and GitLab will
help you get there.

Begin your
journey to DevOps
modernization

Contact Us
 Learn more

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://gitlab.com/-/trials/new?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp
https://about.gitlab.com/sales/?utm_medium=pdf&utm_source=pathfactory&utm_campaign=autosd&utm_content=threephaseappro&utm_budget=dmp

